Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Saturday, March 21, 2015

2015/021) If x^3 + y^3 + z^3 = 81 ,then prove that x + y +z\le 9

Applying C00auchy schwarz inequality to (x,y,z) and (1,1,1) we have
(x+y+z)^2 \le (1+1+1)(x^2+y^2+z^2)
or (x+y+z)^2 \le 3(x^2+y^2+z^2)
hence (x+y+z)^4 \le 9(x^2+y^2+z^2)^2
applying same inequality to \sqrt{x},\sqrt{y},\sqrt{z} and  \sqrt{x^3},\sqrt{y^3},\sqrt{z^3}

 we get :
(x^2+y^2+z^2)^2\le (x+y+z)(x^3+y^3+z^3)
or (x^2+y^2+z^2)^2 \le 81(x+y+z) \cdots (2)

 From (1) and (2)...
(x+y+z)^4 \le 9 * 81 (x+y+z)

or (x+y+z)^3\le 9^3

or (x+y+z)\le 9
refer to https://in.answers.yahoo.com/question/index?qid=20120510235300AA1XWbg

No comments: