Applying
C00auchy schwarz inequality to (x,y,z) and (1,1,1) we have
(x+y+z)^2 \le (1+1+1)(x^2+y^2+z^2)
or (x+y+z)^2 \le 3(x^2+y^2+z^2)
hence (x+y+z)^4 \le 9(x^2+y^2+z^2)^2
applying same inequality to \sqrt{x},\sqrt{y},\sqrt{z} and \sqrt{x^3},\sqrt{y^3},\sqrt{z^3}
we get :
(x^2+y^2+z^2)^2\le (x+y+z)(x^3+y^3+z^3)
or (x^2+y^2+z^2)^2 \le 81(x+y+z) \cdots (2)
From (1) and (2)...
(x+y+z)^4 \le 9 * 81 (x+y+z)
or (x+y+z)^3\le 9^3
or (x+y+z)\le 9
refer
to
https://in.answers.yahoo.com/question/index?qid=20120510235300AA1XWbg
No comments:
Post a Comment