we
have
$(a-b)^2 = a^2 + b^2 - 2ab$
$(b-c)^2 = b^2 + c^2 - 2bc$
$(c-d)^2 = c^2 + d^2 - 2cd$
$(d-a) ^2 = d^2+a^2 - 2ad$
adding $(a-b)^2 + (b-c)^2 + (c-d)^2 - (d-a)^2 = 2(a^2 +b^2 +c^2 + d^2) - 2(ab+bc+cd+da)$
or $2(a^2 +b^2 +c^2 + d^2) = (a-b)^2 + (b-c)^2 + (c-d)^2 + (d-a)^2 + 2(ab+bc+cd+da)$
or $(a^2 +b^2 +c^2 + d^2) = \dfrac{(a-b)^2 + (b-c)^2 + (c-d)^2 + (d-a)^2)}{2}+ (ab+bc+cd+da)$
= $\dfrac{(a-b)^2 + (b-c)^2 + (c-d)^2 + (d-a)^2)}{2}+ 16$
$(b-c)^2 = b^2 + c^2 - 2bc$
$(c-d)^2 = c^2 + d^2 - 2cd$
$(d-a) ^2 = d^2+a^2 - 2ad$
adding $(a-b)^2 + (b-c)^2 + (c-d)^2 - (d-a)^2 = 2(a^2 +b^2 +c^2 + d^2) - 2(ab+bc+cd+da)$
or $2(a^2 +b^2 +c^2 + d^2) = (a-b)^2 + (b-c)^2 + (c-d)^2 + (d-a)^2 + 2(ab+bc+cd+da)$
or $(a^2 +b^2 +c^2 + d^2) = \dfrac{(a-b)^2 + (b-c)^2 + (c-d)^2 + (d-a)^2)}{2}+ (ab+bc+cd+da)$
= $\dfrac{(a-b)^2 + (b-c)^2 + (c-d)^2 + (d-a)^2)}{2}+ 16$
clearly is lowest
when a= b=c=d and value= 16
No comments:
Post a Comment