we
have $\tan\, x + \cot\, x = \tan\, x + \dfrac{1}{\tan\, x}$
= $\dfrac{tan ^2 x + 1}{\ tan\, x} =
\dfrac{sec^2 x}{\tan,x}= \dfrac{1}{\cos\,x\sin\,x}=\dfrac{2}{2\cos\,x\sin\,x} = \dfrac{2}{\sin 2x} = 2 \csc 2x$
so
so
$\tan\, 9^{\circ} + \tan\, 81^{\circ} = 2 \csc\, 18^{\circ} $
$\tan\, 27^{\circ} + \tan\, 63^{\circ} = 2 \csc\, 54^{\circ} $
so given value
= $\tan\, 9^{\circ} - \tan\, 27^{\circ}- \tan\, 63^{\circ} + \tan\, 81^{\circ}=2( \csc\, 18^{\circ} - \csc\, 54^{\circ})$
so given value
= $\tan\, 9^{\circ} - \tan\, 27^{\circ}- \tan\, 63^{\circ} + \tan\, 81^{\circ}=2( \csc\, 18^{\circ} - \csc\, 54^{\circ})$
=
$2(\dfrac{1}{\sin\,18^{\circ}} - \dfrac{1}{\sin\, 54^{\circ}})$
=
$2 \dfrac{2 \cos\, 36^{\circ} \sin\, 18^{\circ}}{ \sin \,18^{\circ} \sin \,54^{\circ} }$
= 4
= 4
No comments:
Post a Comment