taking
6abc to the left and reordering we get
$(a^2b^2-2bac
+ c^2) + (a^2c^2-2abc + b^2) + (b ^2c^2- 2abc + a^2)$
=
$(ab-c)^2 + (ac-b)^2 + (bc-a)^2 \ge 0$
the
expression can be zero only if $ab= c, ac = b , bc = a$ or $abc = $1 or
$zero$
if
a,b,c all are different then above cannot be zero
No comments:
Post a Comment