\frac{1}{2}(x^2 + y^2) + x \cos(\theta) + y \sin(\theta) - 4 = 0 is x^2 + y^2 = 1
Solution
we
have (x^2 + 2 x \cos \theta) + (y^2 + 2y \sin \theta ) = 8
or (x^2 + 2 x \cos \theta+1) + (y^2 + 2y \sin \theta+ 1 ) = 10
or ( x + \cos \theta)^2 + (y + \sin \theta ) ^2 = 10
So the locus of the centre
x = - \cos \theta
y = - \sin \theta
to eliminate \theta
or x^2 + y ^2 = 1
above is the locus
so above is true
or (x^2 + 2 x \cos \theta+1) + (y^2 + 2y \sin \theta+ 1 ) = 10
or ( x + \cos \theta)^2 + (y + \sin \theta ) ^2 = 10
So the locus of the centre
x = - \cos \theta
y = - \sin \theta
to eliminate \theta
or x^2 + y ^2 = 1
above is the locus
so above is true
No comments:
Post a Comment