$a(b^2+c^2-a^2) + b(c^2+a^2-b^2) + c(a^2+b^2-c^2) - 2abc$
Solution
$a(b^2+c^2-a^2) + b(c^2+a^2-b^2) + c(a^2+b^2-c^2) - 2abc$
=$(ab^2+ac^2-a^3 + bc^2+ a^2b -b^3) + c(a^2+b^2-c^2) - 2abc$
= $(c^2(a + b) + a(b^2-a^2) + b(a^2-b^2) + c(a^2+b^2-c^2) - 2abc$
= $(c^2(a+b) + (a-b) (b^2 - a^)) + c(a^2+b^2-c^2) - 2abc$
= $(c^2(a+b) - (a-b)^2(a+b))+ c(a^2+b^2-c^2) - 2abc$
= $(a+b)(c^2 - (a-b)^2) + c(a^2 + b^2 -2ab -c^2)$
= $(a+b)(c^2 - (a-b)^2) + c((a-b)^2 -c^2)$
= $(c^2 - (a-b)^2)((a+b)-c)$
= $(c+a-b)(c-a+b)(a+b-c)$
=$(a+b-c)(b+c-a)(c+a-b)$
No comments:
Post a Comment