Processing math: 100%

Sunday, November 8, 2015

2015/103) If xy + yz + zx =0 then \dfrac{1}{x^2 - yz} + \dfrac{1}{y^2 - zx} +\dfrac{1}{z^2 - xy} is equal to

xy + yz + zx = 0

so yz = -x(y+z)
x^2-yz = x(x+y+z)

so \dfrac{1}{x^2-yz} = \dfrac{1}{x(x+y+z)}
similarly
\dfrac{1}{y^2-xz} = \dfrac{1}{y(x+y+z)}
and

\dfrac{1}{z^2-xy} = \dfrac{1}{z(x+y+z)}

adding all 3 we get your expression

\dfrac{1}{x^2 - yz} + \dfrac{1}{y^2 - zx} +1\dfrac{1}{z^2 - xy} = \dfrac{1}{x+y+z}(\dfrac{1}{x}+\dfrac{1}{y} + \dfrac{1}{z})

\dfrac{1}{x} +\dfrac{1}{y} + \dfrac{1}{z} = \dfrac{yz+xz+xy}{xyz} = 0

so
\dfrac{1}{x^2 - yz} + \dfrac{1}{y^2 - zx} +\dfrac{1}{z^2 - xy} = 0

No comments: