there are 2 cases
1) n is even.
n^4+4^n > 2 and even so composite
2) n is odd
n^4 + 4^n= n^4 + 2n^2*2^n + 4^n - 2n^2*2^n
=(n^2 + 2^n)^2 - 2n^2*2^n
=(n^2 + 2^n)^2 - n^2*2^{n+1}
= (n^2 + 2^n - n * 2^{\frac{n+1}{2}})(n^2 + 2^n + n * 2^{\frac{n+1}{2}})
Therefore, if n is odd it has 2 factors so composite
So it is composite for any n
No comments:
Post a Comment