\sin^3x + \sin^3 (x+\frac{2\pi}{3}) + \sin^3 (x+\frac{4\pi}{3})
=\sin^3x + \sin^3 (x-\frac{\pi}{3}) + \sin^3 (x+\frac{\pi}{3})
= \frac{1}{4}(3\sin x - \sin 3x) + \frac{1}{4} (3\sin(x - \frac{\pi}{3}) - \sin(3x - \pi)) +
\frac{1}{4}(\sin(x + \frac{\pi}{3}) - \sin(3x + \pi))
= \frac{1}{4}(3\sin x - \sin 3x + 3\sin(x - \frac{\pi}{3} ) + \sin3x - 3\sin(x + \frac{\pi}{3}) + \sin 3x)
= (3/4) [\sin x - \sin 3x + \sin(x - \frac{\pi}{3}) + \sin(x + \frac{\pi}{3}]
=\frac{3}{4}(\sin x - \sin 3x - 2 \sin x \sin\frac{\pi}{6})
= \frac{3}{4}(\sin x - \sin3x - \sin x)
= - \frac{3}{4}\sin 3x
The following has been used in proving the above identity
1) \sin^3 x = \frac{3\sin x - \sin3x}{4}
2) \sin A + \sin B = 2\sin \frac{A+B}{2} \sin \frac{A-B}{2}
No comments:
Post a Comment