xyz+xy+xz+yz+x+y+z=1\cdots(1)
wxy+wx+wy+xy+w+x+y=9\cdots(2)
wxz +wx+wz+xz+w+x+z=9\cdots(3)
wyz +wy+wz+yz+w+y+z=5\cdots(4)
Solution
from (1)
xyz+xy+xz+yz+x+y+z+1=2
or (x+1)(y+1)(z+1)=2\cdots(5)
similarly from (2) (3) and (4)
(y + 1)(x + 1)(w + 1) = 10\cdots(6)
(z + 1)(x + 1)(w + 1) = 10\cdots(7)
(y+1)(y+1)(w+1) = 5\cdots(8)
From (5) (6) (7) and (8) we get
(x+1)(y+1)(z+1)(w+1) = 10\cdots(9)
dividing (9) by (5), (6), (7), (8) we get
(w+1) = 5, y+1 = z+ 1 = 1, x + 1 = 2 => x = 1, w = 4, y= z= 0
No comments:
Post a Comment