Processing math: 100%

Saturday, March 12, 2016

2016/022) Show that a^b+b^a > 1 for a , b positive

if a or b are above 1  we are done,.
so let us assume both < 1
by Bernoulli Inequality  we have
(1+x)^n \>= 1+nx
so (1+\frac{a}{b})^{\frac{1}{a}}  \ge 1+\frac{1}{b}
so (1+\frac{a}{b})^{\frac{1}{a}} > \frac{1}{b}
or 1+\frac{a}{b} > (\frac{1}{b})^a
or \frac{a+b}{b} > (\frac{1}{b})^a
or \frac{b}{a+b} < b^a
similarly
\frac{a}{a+b} < a^b
Adding, we get 1 < a^b + b^a
or a^b+b^a > 1

No comments: