Processing math: 4%

Saturday, May 21, 2016

2016/041) If ax + y + 1= 0, x +by+1=0, x+y+c=0 are concurrent then prove that \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1

proof
We have
a = - \frac{y+1}{x}
or 1- a = \frac{x+y+1}{x}
or \frac{1}{1-a} = \frac{x}{x+y + 1} \cdots 1
Similarly
or x +by+1=0
or  x+1 = - by
or b = -\frac{x+1}{y}
or 1-b= \frac{x+y+1}{y}
or \frac{1}{1-b} = \frac{y}{x+y+1}\cdots (2)

and x+y+c=0
=>c = x + y
=>1-c = x+y+1
or \frac{1}{1-c} = \frac{1}{x+y+1}\cdots(3)

adding all 3 we get the
\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = \frac{x+ y + 1}{x+y+1} =1

Proved

No comments: