we have for n > 1$n^th$ term = $\frac{2n-1}{(n-1)!} = \frac{2n-2+1}{(n-1)!} = 2 \frac{1}{(n-2)!} + \frac{1}{(n-1)!}$
so the sum = $1 + \sum_{n=2}^{+\infty} (2 \frac{1}{(n-2)!} + \frac{1}{(n-1)!})$
$= 1 + \sum_{n=2}^{+\infty} (2 \frac{1}{(n-2)!} + \frac{1}{(n-1)!})$
$= 1 + \sum_{n=2}^{+\infty} \frac{1}{(n-1)!} + 2 \sum_{n=2}^{+\infty} \frac{1}{(n-2)!}$
$= 1 + \sum_{n=1}^{+\infty} \frac{1}{n!} + 2 \sum_{n=0}^{+\infty} \frac{1}{n!}$
$= \sum_{n=0}^{+\infty} \frac{1}{n!} + 2 \sum_{n=0}^{+\infty} \frac{1}{n!}$
$= 3 \sum_{n=0}^{+\infty} \frac{1}{n!} =3e$
No comments:
Post a Comment