Processing math: 100%

Thursday, July 28, 2016

2016/069) Given z'=1+i-\frac{2}{z}. Let z=x+iy, prove that if z' is a pure imaginary, then M moves on a circle

we have
z'=1+i-\frac{2}{x+iy}
multiply by conjugate to get
z'= 1+i-\frac{2(x-iy)}{x^2+y^2}
=1- \frac{2x}{x^2+y^2} + i(1+ \frac{2y}{x^2+y^2})
if it is imaginary real part is zero
or
1- \frac{2x}{x^2+y^2} = 0
orx^2+y^2 - 2x = 0
ort x^2-2x+1 + y^2 =1
or (x-1)^2+y^2 = 1
which is a circle with centre(1,0) radius 1

No comments: