$\tan(x+y) = \frac{\tan\,x+\tan\,y}{1-\tan\,x\tan\,y}$ or $(a+b)(1-\tan\,x\tan\,y) = \tan\,x+\tan\,y \cdots(1)$
Similarly $(a-b)(1+\tan\,x\tan\,y) = \tan\,x-\tan\,y\cdots(2)$
multilying (1) by (a-b) and (2) by (a+b) and adding we get $(a^2-b^2) = 2a\tan\,x-2b\tan\,y$
devide both sides by 2 to get the result.
No comments:
Post a Comment