Processing math: 100%

Friday, September 30, 2016

2016/089) Evaluate \sin\,18^\circ and \cos\,18^\circ

Let, A = 18^\circ
Then 2A = 90^\circ - 3A
Taking sine on both sides, we get
\sin 2A = \sin (90^\circ - 3A) = \cos 3A
=> 2 \sin\, A \cos\, A = 4 \cos^3 A - 3 \cos\, A
or 2 \sin\, A \cos\, A - 4 \cos^3 A + 3 \cos\, A = 0
or \cos\, A (2 \sin\, A - 4 \cos^2 A + 3) = 0
Dividing both sides by \cos\, A = \cos 18^\circ which is not zero we get
2 \sin\, A - 4 (1 - \sin^2 A) + 3 = 0
or 4 \sin^2 A + 2 \sin\ A - 1 = 0 which is a quadratic in \sin\ A
hence \sin\,A = \frac{-1\pm\sqrt{5}}{4}
but as \sin\, 18^\circ is positive we have \sin 18^\circ = \frac{-1+\sqrt{5}}{4}
now \cos^2 18^\circ= 1- \sin ^2 18^\circ = 1 - (\frac{-1+\sqrt{5}}{4})^2
= 1 - \frac{5+1-2\sqrt{5}}{16} = \frac{10+2\sqrt{5}}{16}
 \cos\,18^\circ= \frac{\sqrt{10+2\sqrt{5}}}{4}

2016/088) Which number is smaller \sqrt{3} + \sqrt{5} or \sqrt{2} + \sqrt{6}

we have \sqrt{3} - \sqrt{2}= \frac{1}{\sqrt{3} + \sqrt{2}}
and  \sqrt{6} - \sqrt{5}= \frac{1}{\sqrt{6} + \sqrt{5}}
from the above \sqrt{3} - \sqrt{2} > \sqrt{6} - \sqrt{5}
or  \sqrt{3} + \sqrt{5} > \sqrt{6} + \sqrt{2}

Wednesday, September 28, 2016

2016/087) If a\sin\,x=b\sin(x+\frac{2\pi}{3})=c\sin(x+\frac{4\pi}{3}) prove that ab+bc+ca=0

Let asin\,x=b\sin(x+\frac{2\pi}{3})=c\sin(x+\frac{4\pi}{3})=k
hence \frac{k}{a} = \sin\,x\cdots(1)
\frac{k}{b} = \sin(x+\frac{2\pi}{3})\cdots(2)
\frac{k}{c} = \sin(x+\frac{4\pi}{3})
or \frac{k}{c} = \sin(x-\frac{2\pi}{3})\cdots(3)

from (1),(2) and (3)
\frac{k}{a} + \frac{k}{b} + \frac{k}{c} =\sin\,x +  \sin(x+\frac{2\pi}{3}) + \sin(x-\frac{2\pi}{3})
= \sin\,x +  \sin\,x\cos \frac{2\pi}{3} + \cos \,x\sin  \frac{2\pi}{3} + \sin\,x\cos \frac{2\pi}{3} - \cos \,x\sin  \frac{2\pi}{3}
= \sin\,x +  2\sin\,x\cos \frac{2\pi}{3}
= \sin\,x +  2\sin\,x( -\frac{1}{2})
= \sin\,x -  \sin\,x
= 0

2016/086) If a,b,c are in AP find the fixed point wthough which line ax+by+c= 0 passes

a,b,c are in AP so a+c = 2b or c = 2b-a
ax+by+c=0
=>ax + by + (2b-a)=0 or (x-1) a + (y+2) b=0
so the point through which the lines pass is (1,-2) as the above equation should be independent of (a,b)