Let asin\,x=b\sin(x+\frac{2\pi}{3})=c\sin(x+\frac{4\pi}{3})=k
hence \frac{k}{a} = \sin\,x\cdots(1)
\frac{k}{b} = \sin(x+\frac{2\pi}{3})\cdots(2)
\frac{k}{c} = \sin(x+\frac{4\pi}{3})
or \frac{k}{c} = \sin(x-\frac{2\pi}{3})\cdots(3)
from (1),(2) and (3)
\frac{k}{a} + \frac{k}{b} + \frac{k}{c} =\sin\,x + \sin(x+\frac{2\pi}{3}) + \sin(x-\frac{2\pi}{3})
= \sin\,x + \sin\,x\cos \frac{2\pi}{3} + \cos \,x\sin \frac{2\pi}{3} + \sin\,x\cos \frac{2\pi}{3} - \cos \,x\sin \frac{2\pi}{3}
= \sin\,x + 2\sin\,x\cos \frac{2\pi}{3}
= \sin\,x + 2\sin\,x( -\frac{1}{2})
= \sin\,x - \sin\,x
= 0
No comments:
Post a Comment