Processing math: 100%

Saturday, December 10, 2016

2016/111) if s+t+u+v = 0

 show that (s^3+t^3 + u^3+v^3)^2 = 9*(st-uv)(tu-sv)*(us-tv)

Solution

From the above
(s+t) = -(u+v)\cdots(1)
also
s+t+ u = -v \cdots(2)
cube both sides of (1) to get
(s+t)^3 = - (u+v)^3
or s^3+t^3 + 3st(s+t) = - (u^3+v^3 + 3uv(u+v)
or s^3+t^3+ u^3+v^3 = -(3st(s+t) + 3uv(u+v))= -3(st(s+t) - uv(s+t)) using (1)
or s^3+t^3+u^3+v^3 = -3(st-uv)(s+t)\cdots(3)
by symmetry we can show that
 s^3+t^3+u^3+v^3 = -3(su-tv)(s+u)\cdots(4)
by multiplying (3) with (4) we get
(s^3+t^3+u^3+v^3)^2 = 9(st-uv)(su-tv)((s+t)(s+u))
= 9(st-uv)(su-tv)(s^2+ st + su + ut)
= 9(st-uv)(su-tv)(s(s+t+u) + ut)
= 9(st-uv)(su-tv)(-vs + ut) using (2)
= 9(st-uv)(ut-sv)(su-tv)
Proved

No comments: