Loading web-font TeX/Math/Italic

Tuesday, September 19, 2017

2017/023) Find natural number n such that n^4+33 is a a perfect square

we need to have n^4+33 >= (n^2+1)^2 as next of x^2 is (x+1)^2
so 33 >= 2n^2 +1 or n^2 <=16 or n<=4
n cannot be odd as n^4+33 shall be 2 mod 4 and cannot be perfect square
so n = 2 or 4
both are solutions as 2^4+33= 49 = 7^2 and 4^4+33=289=17^2


No comments: