Processing math: 100%

Wednesday, September 5, 2018

2018/015) Find all positive n such that 3^{n-1} +5^{n-1} divides 3^n + 5^n

We have 3^n + 5^n= 3(3^{n-1} +5^{n-1}) + 2*5^{n-1}
So if  3^{n-1} +5^{n-1} divides 3^n +5^n then it divides 2*5^{n-1}
But 3^{n-1} +5^{n-1}  does not divide 5^{n-1} and they are co-primes
So 3^{n-1} +5^{n-1} divides 2
So 3^{n-1} +5^{n-1} = 1 or 2 so we get n= 1

No comments: