We are given
a^2+b^2= \frac{19}{9}c^2
Using the above and law of cosine we get
2ab\cos\, C = a^2+b^2-c^2 = \frac{19}{9}c^2 - c^2 = \frac{10}{9}c^2
or ab\cos\, C = \frac{5c^2}{9}\cdots(1)
Further
\cot\, A +\cot\, B= \frac{\cos\, A}{\sin\, A} + \frac{\cos\, B}{\sin\, B}
= \frac{\cos\, A\sin\, B + \sin\,A\cos\, B}{\sin \, A\sin\, B}
= \frac{\sin(A+B)}{\sin \, A\sin\, B}
= \frac{\sin(\pi-C)}{\sin \, A\sin\, B} as A+B+C=\pi
= \frac{\sin\,C}{\sin \, A\sin\, B}
Hence \frac{\cot\,C}{\cot\, A + \cot \, B} = \frac{\cos\, C \sin\, A\sin\, B}{\sin ^2C}
=\frac{ab\cos\,C}{c^2} (using law of sin)
=\frac{5}{9}
No comments:
Post a Comment