Using law of sin's $\sin A = ka, \sin B= kb, \sin C = kc$
We get
$b^2+c^2 - a^2 = bc$
Or $a^2 = b^2 + c^2 + bc\cdots(1)$
By law of cos
$a^2 = b^2 + c^2 - 2bc \cos A \cdots(2)$
from (1) and (2)
$2 \cos A = - 1$ or $\cos A = \frac{-1}{2}$ or $A = 12^circ$
No comments:
Post a Comment