Loading web-font TeX/Main/Regular

Tuesday, September 7, 2021

2021/071) For the triangle with angles A,B,C, the following trigonometric equality holds. \sin^2B+\sin^2C−\sin^2A=\sin\,B\sin\,C Find the measure of the angle A.

Using law of sin's \sin A = ka, \sin B= kb, \sin C = kc

We get

b^2+c^2 - a^2 = bc

Or a^2 = b^2 + c^2 + bc\cdots(1)

By law of cos

a^2 = b^2 + c^2 - 2bc \cos A \cdots(2)

from (1) and (2)

2 \cos A = - 1 or \cos A = \frac{-1}{2} or A = 12^circ

No comments: