let x + \frac{1}{x} = y
so cube both sides
x^3 + \frac{1}{x^3} + 3(x + \frac{1}{x}) = y^3
or x^3 + \frac{1}{x^3} = y^3-3y
and x^2+ \frac{1}{x^2} = y^2 -2
multiply both to get
x^5 + \frac{1}{x} + x + \frac{1}{x^5} = 123 + y = (y^3-3y)(y^2-2) = y^5 - 5y^3 + 6y
or y^5 - 5y^3 + 5y - 123 =0
or (y-3)(u^4 + 3y^3 + 4y^2 + 12y + 41) = 0
gives y = 3 or complex solutions
so x+ \frac{1}{x} = 3 if x is real
No comments:
Post a Comment