let $x + \frac{1}{x} = y$
so cube both sides
$x^3 + \frac{1}{x^3} + 3(x + \frac{1}{x}) = y^3$
or $x^3 + \frac{1}{x^3} = y^3-3y$
and $x^2+ \frac{1}{x^2} = y^2 -2$
multiply both to get
$x^5 + \frac{1}{x} + x + \frac{1}{x^5} = 123 + y = (y^3-3y)(y^2-2) = y^5 - 5y^3 + 6y$
or $y^5 - 5y^3 + 5y - 123 =0$
or $(y-3)(u^4 + 3y^3 + 4y^2 + 12y + 41) = 0$
gives y = 3 or complex solutions
so $x+ \frac{1}{x} = 3$ if x is real
No comments:
Post a Comment