Processing math: 100%

Wednesday, January 9, 2019

2019/002) Given x^5+\frac{1}{x^5} Show that x+\frac{1}{x}=3 where x is real

let x + \frac{1}{x} = y 
so cube both sides 
x^3 + \frac{1}{x^3} + 3(x + \frac{1}{x}) = y^3 
or x^3 + \frac{1}{x^3} = y^3-3y 
and x^2+ \frac{1}{x^2} = y^2 -2 
multiply both to get 
x^5 + \frac{1}{x} + x + \frac{1}{x^5} = 123 + y = (y^3-3y)(y^2-2) = y^5 - 5y^3 + 6y 
or y^5 - 5y^3 + 5y - 123 =0 
or (y-3)(u^4 + 3y^3 + 4y^2 + 12y + 41) = 0 
gives y = 3 or complex solutions 
so x+ \frac{1}{x} = 3 if x is real

No comments: