Processing math: 10%

Sunday, January 27, 2019

2019/004) If \frac{a}{b+ c} + \frac{b}{c+a} + \frac{c}{a+b} = 1 then prove that \frac{a^2}{b+ c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} = 0

We are given
\frac{a}{b+ c} + \frac{b}{c+a} + \frac{c}{a+b} = 1
Multiplying both sides by (a+b+c) we get
\frac{a(a+b+c)}{b+ c} + \frac{b(a+b+c)}{c+a} + \frac{c(a+b+c)}{a+b} = a+b+c
Or
\frac{a^2}{b+ c} + a + \frac{b^2}{c+a} + b + \frac{c^2}{a+b} + c= a+b+c
Or
\frac{a^2}{b+ c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} = 0

No comments: