We have 2^3=8 < 9 = 3^2
Hence 2^\frac{3}{2} < 3
Or \log_23 > \frac{3}{2}\cdots(1)
3^3=27 > 25 = 5^2
Hence 3^\frac{3}{2} > 5
Or \log_35 < \frac{3}{2}\cdots(2)
Using (1) and (2) \log_23 > \log_35
some short and selected math problems of different levels in random order I try to keep the ans simple
Wednesday, January 15, 2020
Saturday, January 11, 2020
2020/004) Prove that \log_abc.\log_bca.\log_abc = 2 + \log_abc+\log_bca+\log_abc
Solution
Let \log_ab= x\cdots(1)
\log_bc=y\cdots(2)
\log_ca=z\cdots(3)
So we have xyz= \log_ab.\log_bc.\log_ca=1 \cdots(4)
\log_abc= \log_ab + \log_ac = x + \frac{1}{z}= x + xy= x(1+y)\cdots(5)
Similarly
\log_bca= y(1+z)\cdots(6)
And
\log_bca= z(1+x)\cdots(7)
Now LHS= \log_abc.\log_bca.\log_abc
=x(1+y) . y(1+z) . z (1+x) from (5),(6),(7)
= xyz(1+y)(1+z)(1+x)
= (1+y)(1+z)(1+x) from (4) as xyz=1
= 1 + y + z + x + xy+yz + zx + xyz
= 1 + y + z + x + xy+yz + zx + 1 from (4) as xyz=1
= 2 + y + yz + x + xy+ z + zx Rearrangement of terms
=2 + y(1+z) + x(1+y) + z(1+x)
=2 +\log_bca + \log_abc + \log_cab
=2 + \log_abc + \log_bca + \log_cab Rearrangement of terms
=RHS
Hence Proved
Let \log_ab= x\cdots(1)
\log_bc=y\cdots(2)
\log_ca=z\cdots(3)
So we have xyz= \log_ab.\log_bc.\log_ca=1 \cdots(4)
\log_abc= \log_ab + \log_ac = x + \frac{1}{z}= x + xy= x(1+y)\cdots(5)
Similarly
\log_bca= y(1+z)\cdots(6)
And
\log_bca= z(1+x)\cdots(7)
Now LHS= \log_abc.\log_bca.\log_abc
=x(1+y) . y(1+z) . z (1+x) from (5),(6),(7)
= xyz(1+y)(1+z)(1+x)
= (1+y)(1+z)(1+x) from (4) as xyz=1
= 1 + y + z + x + xy+yz + zx + xyz
= 1 + y + z + x + xy+yz + zx + 1 from (4) as xyz=1
= 2 + y + yz + x + xy+ z + zx Rearrangement of terms
=2 + y(1+z) + x(1+y) + z(1+x)
=2 +\log_bca + \log_abc + \log_cab
=2 + \log_abc + \log_bca + \log_cab Rearrangement of terms
=RHS
Hence Proved
Thursday, January 9, 2020
2020/003) If 1 < x < 2, Then Prove that \frac{1}{\sqrt{x+2\sqrt{x-1}}}+ \frac{1}{\sqrt{x-2\sqrt{x-1}}} = \frac {2}{2-x}
Solution
Let \sqrt{x+2\sqrt{x-1}} = \sqrt{m} + \sqrt{n}
Hence \sqrt{x-2\sqrt{x-1}} = \sqrt{m} - \sqrt{n}
Without loss of generality let us assume m >=n
Square both sides to get x+2\sqrt{x-1} = m + n + 2\sqrt{mn}
Comparing rational and surds on both sides we get
x=m +n\cdots(1)
x-1= mn\cdots(2)
From (1) and (2)
(m-n)^2 = (m+n)^2-4mn = x^2-4(x-1) = (2-x)^2 we chose 2-x as x < 2
or m-n=2-x\cdots(3)
From (3) and (1) we get m=1, n = x-1
Hence we get
\frac{1}{\sqrt{x+2\sqrt{x-1}}}+ \frac{1}{\sqrt{x-2\sqrt{x-1}}}
= \frac{1}{\sqrt{m}+\sqrt{n}}+ \frac{1}{\sqrt{m}-\sqrt{n}}
= \frac{\sqrt{m}+\sqrt{n}+ \sqrt{m}-\sqrt{n}} {m-n}
= \frac{2\sqrt{m}} {m-n}
= \frac{2\sqrt{1}} {2-x}
= \frac{2} {2-x}
Let \sqrt{x+2\sqrt{x-1}} = \sqrt{m} + \sqrt{n}
Hence \sqrt{x-2\sqrt{x-1}} = \sqrt{m} - \sqrt{n}
Without loss of generality let us assume m >=n
Square both sides to get x+2\sqrt{x-1} = m + n + 2\sqrt{mn}
Comparing rational and surds on both sides we get
x=m +n\cdots(1)
x-1= mn\cdots(2)
From (1) and (2)
(m-n)^2 = (m+n)^2-4mn = x^2-4(x-1) = (2-x)^2 we chose 2-x as x < 2
or m-n=2-x\cdots(3)
From (3) and (1) we get m=1, n = x-1
Hence we get
\frac{1}{\sqrt{x+2\sqrt{x-1}}}+ \frac{1}{\sqrt{x-2\sqrt{x-1}}}
= \frac{1}{\sqrt{m}+\sqrt{n}}+ \frac{1}{\sqrt{m}-\sqrt{n}}
= \frac{\sqrt{m}+\sqrt{n}+ \sqrt{m}-\sqrt{n}} {m-n}
= \frac{2\sqrt{m}} {m-n}
= \frac{2\sqrt{1}} {2-x}
= \frac{2} {2-x}
Saturday, January 4, 2020
2020/002) a,b,c are in AP, x,y,z are in HP and ax,by,cz are in GP then prove that \frac{x}{z} + \frac{z}{x} = \frac{a}{c} + \frac{c}{a}
We have x,y,z are in HP so
\frac{1}{x} + \frac{1}{z} = \frac{2}{y}
Squaring both sides
\frac{1}{x^2} + \frac{1}{z^2} + \frac{2}{xz} = \frac{4}{y^2}
Or \frac{1}{x^2} + \frac{1}{z^2} = \frac{4}{y^2} - \frac{2}{xz}
Or \frac{x^2+z^2}{x^2z^2} = \frac{4}{y^2} - \frac{2}{xz}
Or \frac{x^2+z^2}{xz} = \frac{4xz}{y^2} - 2\
Or \frac{x}{z} + \frac{z}{x} = \frac{4xz}{y^2} - 2\cdots(1)
As ax,by,cz are in GP
axcz = b^2y^2
Or \frac{xz}{y^2} = \frac{b^2}{ac}
Putting above in (1)
\frac{x}{z} + \frac{z}{x} = \frac{4b^2}{ac} - 2\cdots(2)
As a,b,c are in AP we have 2b= a + c
Putting in (2) we get
\frac{x}{z} + \frac{z}{x} = \frac{(a+c)^2}{ac} - 2
Or \frac{x}{z} + \frac{z}{x} = \frac{(a+c)^2-2 ac} {ac}
Or \frac{x}{z} + \frac{z}{x} = \frac{a^2+c^2} {ac}
Or \frac{x}{z} + \frac{z}{x} = \frac{a}{c} + \frac{c}{a}
proved
\frac{1}{x} + \frac{1}{z} = \frac{2}{y}
Squaring both sides
\frac{1}{x^2} + \frac{1}{z^2} + \frac{2}{xz} = \frac{4}{y^2}
Or \frac{1}{x^2} + \frac{1}{z^2} = \frac{4}{y^2} - \frac{2}{xz}
Or \frac{x^2+z^2}{x^2z^2} = \frac{4}{y^2} - \frac{2}{xz}
Or \frac{x^2+z^2}{xz} = \frac{4xz}{y^2} - 2\
Or \frac{x}{z} + \frac{z}{x} = \frac{4xz}{y^2} - 2\cdots(1)
As ax,by,cz are in GP
axcz = b^2y^2
Or \frac{xz}{y^2} = \frac{b^2}{ac}
Putting above in (1)
\frac{x}{z} + \frac{z}{x} = \frac{4b^2}{ac} - 2\cdots(2)
As a,b,c are in AP we have 2b= a + c
Putting in (2) we get
\frac{x}{z} + \frac{z}{x} = \frac{(a+c)^2}{ac} - 2
Or \frac{x}{z} + \frac{z}{x} = \frac{(a+c)^2-2 ac} {ac}
Or \frac{x}{z} + \frac{z}{x} = \frac{a^2+c^2} {ac}
Or \frac{x}{z} + \frac{z}{x} = \frac{a}{c} + \frac{c}{a}
proved
Wednesday, January 1, 2020
2020/001) a,b,c are in AP, b,c,d are in GP, and c,d,e are in HP, prove that a,c,e are in GP
Solution
We are given a,b,c are in AP so
2b= a +c \cdots(1)
b,c,d are in GP so
bd=c^2\cdots(2)
c,d,e are in HP, so
\frac{1}{c} + \frac{1}{e} = \frac{2}{d}
or \frac{e+c}{ce} = \frac{2}{d}\cdots(3)
or d = \frac{2ce}{e+c}
From(2)
c^2 = bd
or 2c^2 = 2bd = (a+c) \frac{2ce}{e+c} putting from (1) and (3)
or c^2(e+c) = ce(a+c)
or c(e+c) = e(a+c)
or c^2= ae
Hence a,c,e are in GP
We are given a,b,c are in AP so
2b= a +c \cdots(1)
b,c,d are in GP so
bd=c^2\cdots(2)
c,d,e are in HP, so
\frac{1}{c} + \frac{1}{e} = \frac{2}{d}
or \frac{e+c}{ce} = \frac{2}{d}\cdots(3)
or d = \frac{2ce}{e+c}
From(2)
c^2 = bd
or 2c^2 = 2bd = (a+c) \frac{2ce}{e+c} putting from (1) and (3)
or c^2(e+c) = ce(a+c)
or c(e+c) = e(a+c)
or c^2= ae
Hence a,c,e are in GP
Subscribe to:
Posts (Atom)