Solution
Let \log_ab= x\cdots(1)
\log_bc=y\cdots(2)
\log_ca=z\cdots(3)
So we have xyz= \log_ab.\log_bc.\log_ca=1 \cdots(4)
\log_abc= \log_ab + \log_ac = x + \frac{1}{z}= x + xy= x(1+y)\cdots(5)
Similarly
\log_bca= y(1+z)\cdots(6)
And
\log_bca= z(1+x)\cdots(7)
Now LHS= \log_abc.\log_bca.\log_abc
=x(1+y) . y(1+z) . z (1+x) from (5),(6),(7)
= xyz(1+y)(1+z)(1+x)
= (1+y)(1+z)(1+x) from (4) as xyz=1
= 1 + y + z + x + xy+yz + zx + xyz
= 1 + y + z + x + xy+yz + zx + 1 from (4) as xyz=1
= 2 + y + yz + x + xy+ z + zx Rearrangement of terms
=2 + y(1+z) + x(1+y) + z(1+x)
=2 +\log_bca + \log_abc + \log_cab
=2 + \log_abc + \log_bca + \log_cab Rearrangement of terms
=RHS
Hence Proved
No comments:
Post a Comment