Processing math: 100%

Friday, January 8, 2021

2021/002) It is given that the ratio of angles A,\,B and C is 1:2:4 in a \triangle ABC, prove that (a^2-b^2)(b^2-c^2)(c^2-a^2)=(abc)^2.

We see that angles A,\,B and C are \frac{\pi}{7}, \frac{2\pi}{7} and \frac{4\pi}{7}
and using laws of sines we need to prove

(\sin ^2 A -\sin ^2 B)(\sin ^2 B - \sin ^2 C)(\sin ^2 C - \sin ^2 A)= (\sin\,A \sin\,B \sin\, C)^2.
\where A= \frac{\pi}{7} B= \frac{2\pi}{7} and C= \frac{4\pi}{7}


to avoid fraction let x =\frac{\pi}{7} so A= x B= 2x and C= 4x


so \sin\,x = \sin 6x and \sin 3x = \sin 4x
we shall be using the following


\sin\, X + \sin \,Y = 2 \sin \frac{X+Y}{2} \cos \frac{X-Y}{2}\cdots(1)
\sin\, X - \sin \,Y = 2 \sin \frac{X-Y}{2} \cos \frac{X+Y}{2}\cdots(2)


So


\sin ^2 X - \sin ^2 Y
= (\sin\, X + \sin \,Y)(\sin\, X - \sin \,Y)
= (2 \sin \frac{X+Y}{2} \cos \frac{X+Y}{2})(2 \sin \frac{X-Y}{2} \cos \frac{X-Y}{2})
= \sin (X+Y)\sin(X-Y)


Now
LHS
= (\sin ^2 A -\sin ^2 B)(\sin ^2 B - \sin ^2 C)(\sin ^2 C - \sin ^2 A)
= (\sin ^2 x -\sin ^2 2x)(\sin ^2 2x - \sin ^2 4x)(\sin ^2 4x - \sin ^2 x)
= (\sin ^2 2x -\sin ^2 x)(\sin ^2 4x - \sin ^2 2x)(\sin ^2 4x - \sin ^2 x) multiplying 1st and 2nd terms by -1
= \sin 3x \sin \,x \sin 6x \sin 2x \sin 3x \sin \,x
= \sin 4x \sin \,x \sin x \sin 2x \sin 3x \sin \,x as \sin 3x = \sin 4x and \sin 6x =\sin \,x
= (\sin\,x \sin 2x \sin 4x)^2
= (\sin\,A \sin\,B \sin\, C)^2
= RHS


No comments: