We have $\frac{1}{a^2-1} + \frac{1}{b^2-1} + \frac{1}{c^2-1} = 1\cdots(1)$
Now
$\frac{2}{a^2-1} = \frac{1}{a+1} + \frac{1}{a-1}$
As $a > 1$ so we have $a-1 > 0$ and hence
$\frac{1}{a+1} < \frac{1}{a-1}$
adding $\frac{1}{a+1}$ on both sides
$\frac{2}{a+1} < \frac{1}{a-1} + \frac{1}{a+1}$
Or $\frac{2}{a+1} > \frac{2}{a^2-1}$
Or $\frac{1}{a+1} < \frac{1}{a^2-1}\cdots(2)$
Similarly
Or $\frac{1}{b+1} < \frac{1}{a^2-1}\cdots(3)$
Or $\frac{1}{c+1} < \frac{1}{a^2-1}\cdots(4)$
Adding above 3 we get
$\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} < \frac{1}{a^2-1} + \frac{1}{b^2-1} + \frac{1}{c^2-1}$
or $\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} < 1$
No comments:
Post a Comment