We have \frac{1}{a^2-1} + \frac{1}{b^2-1} + \frac{1}{c^2-1} = 1\cdots(1)
Now
\frac{2}{a^2-1} = \frac{1}{a+1} + \frac{1}{a-1}
As a > 1 so we have a-1 > 0 and hence
\frac{1}{a+1} < \frac{1}{a-1}
adding \frac{1}{a+1} on both sides
\frac{2}{a+1} < \frac{1}{a-1} + \frac{1}{a+1}
Or \frac{2}{a+1} > \frac{2}{a^2-1}
Or \frac{1}{a+1} < \frac{1}{a^2-1}\cdots(2)
Similarly
Or \frac{1}{b+1} < \frac{1}{a^2-1}\cdots(3)
Or \frac{1}{c+1} < \frac{1}{a^2-1}\cdots(4)
Adding above 3 we get
\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} < \frac{1}{a^2-1} + \frac{1}{b^2-1} + \frac{1}{c^2-1}
or \frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} < 1
No comments:
Post a Comment