Processing math: 100%

Saturday, January 30, 2021

2021/006) Let a,b,c be real with a,b,c > 1 and \frac{1}{a^2-1} + \frac{1}{b^2-1} + \frac{1}{c^2-1} = 1 Show that \frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} <= 1

We have \frac{1}{a^2-1} + \frac{1}{b^2-1} + \frac{1}{c^2-1} = 1\cdots(1)

Now 

\frac{2}{a^2-1} = \frac{1}{a+1} + \frac{1}{a-1}

As a > 1 so we have a-1 > 0 and hence

\frac{1}{a+1} <  \frac{1}{a-1}

adding  \frac{1}{a+1} on both sides

\frac{2}{a+1} <  \frac{1}{a-1} + \frac{1}{a+1}

Or \frac{2}{a+1} >  \frac{2}{a^2-1}

Or \frac{1}{a+1} <  \frac{1}{a^2-1}\cdots(2)

Similarly

Or \frac{1}{b+1} <  \frac{1}{a^2-1}\cdots(3)

Or \frac{1}{c+1} <  \frac{1}{a^2-1}\cdots(4) 

Adding above 3 we get

\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} <  \frac{1}{a^2-1} + \frac{1}{b^2-1} + \frac{1}{c^2-1}

or \frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} <  1 

No comments: