We have
LHS $= abc(\frac{a}{c} + \frac{a}{b}) + abc(\frac{b}{c} + \frac{b}{a})+ abc(\frac{c}{b} + \frac{c}{a})$
$= abc(\frac{a}{c} + \frac{a}{b} + \frac{b}{c} + \frac{b}{a} + \frac{c}{b} + \frac{c}{a})$
$= abc(\frac{a}{c} + \frac{c}{a} + \frac{b}{c} + \frac{c}{b} + \frac{a}{b} + \frac{b}{a})$
as $\frac{a}{c} + \frac{c}{a} \ge 2 $
$\frac{b}{c} + \frac{c}{b} \ge 2 $
$\frac{a}{b} + \frac{b}{a} \ge 2 $
The above 3 relations follow from am gm inequality
putting the value we get
LHS $>= abc(2+2+2)$ or LHS $>= 6abc$
No comments:
Post a Comment