let the other 2 roots be c and d
then we get comparing coefficients (this is given by viete;s relation also)
a+b+c+d = -1
ab+ac+ad+bc+bd+cd = 0
abc+abd + acd + bdc = 0
abcd = -1
putting a+ b= s c+d = t, ab = p and cd = q we get
s+ t = -1 ...1
p + q + st = 0....2
pt + qs = 0...3
and pq = -1...4
$q = - \frac{1}{p}$ (from 4) and t = -1 -s(from 1) we get
$p - \frac{1}{p} - s^2 -s = 0 \cdots(5)$
and $p(-1-s) - \frac{s}{p} = 0 => p^(1-s) - s = 0$
$=> s =\frac{p^2}{1+p^2} \cdots(6)$
from 6 put s in 5 to get
$p - \frac{1}{p} -\frac{p^4}{(p^2+1)^2} +\frac{p^2}{(1+p^2} = 0$
or $p^2(p^2+1)^2 -(p^2+1)^2 -p^5 +p^3(p^2+1) = 0$
or $p^2(p^4+2p^2+1) - (p^4 + 2p^2 + 1) -p^5 + p^5 + p^3 = 0$
or $p^6 +p^4 +p^3 -p^2 -1 = 0$
so p is a root of $x^6 +x^4 + x^3 -x^2 -1$
so ab (which is p) a root of $x^6 +x^4 + x^3 -x^2 -1$
No comments:
Post a Comment