We get factoring RHS
$p^x = y^4 + 4 = (y^4 + 4y^2 + 4) - 4y^2$
$= (y^2 - 2y +2)(y^2+ 2y2)$
as RHS is a power of p so each factor is power of p
and clearly $ (y^2 - 2y +2) < (y^2+ 2y+2)$
so $(y^2 - 2y +2) | (y^2+ 2y+2)\cdots(1)$
Or $(y^2 - 2y +2) | (y^2 - 2y +2) - (y^2+ 2y+2)$
Or $(y^2 - 2y +2) | (y^2 - 2y+2) - (y^2+ 2y+2)$
Or $(y^2- 2y+2 | 4y\cdots(2)$
Hence $(y^2- 2y+2 | 4y^2\cdots(3)$
From (1) and (3) we get
$(y^2 - 2y +2) | 4(y^2+ 2y+2)- 4y^2$
or $(y^2 - 2y +2) | 8y+8 $
$(y^2 - 2y +2) | 8(y + 1)\cdots(4) $
As y and y+ 1 are co-primes from 2) ad (4)
$(y^2 - 2y +2) | 8\cdots(4) $
So we have 4 cases $y^2-2y+2$ = 1 or 2 or 4 or 8
Let us take the csses one by 1
case 1)
$y^2-2y+2 = 1$
or $y^2-2y+1= 0$ or $y= 1$
this gives $p^x = 1^4 + 4 = 5$ giving $p=5,x = 1$
Case 2)
$y^2-2y+2 = 2$
or $y^2-2y = 0$ or $y= 0$ or 2
$y=2$ gives $p^x = 20$ which s not a power of a prime
Case 3)
$y^2-2y+2 = 4$
or $y^2 - 2y - 2= 0$ this does not have integer solution
Case 4)
$y^2-2y + 2 = 8$
or $y^2 - 2y - 6= 0$ and this does not have integer solution
So the solution set $p=5,x=1,y=1$
No comments:
Post a Comment