Processing math: 100%

Thursday, May 27, 2021

2021/037) Solve the system of equations

a + b + c = 7\cdots(1)

a^2 + b^2 + c^2 = 21\cdots(2)

abc= 8 \cdots(3)

Solution 

We are given 

a + b + c = 7\cdots(1)

a^2 + b^2 + c^2 = 21\cdots(2)

abc= 8 \cdots(3)

From (1) and (2) we get

(a+b+c)^2 - (a^2+b^2+ c^2) = 7^2 - 21

Or 2(ab+bc+ca) = 28

Or ab+bc+ca = 14\cdots(4)

a , b, c are roots of equation

(x-a)(x-b)(x-c) = 0

Or x^3-x^2(a+b+c) + x(ab + bc + ca) - abc= 0

Putting the values from (1), (3) and (4) we get 

x^3 - 7x^2 + 14x - 8 = 0

We know from above that the value becomes zero when x = 1 so x =1 is a factor and (dividing by x- 1) we get

(x-1)(x^2 - 6x + 8) = 0

Or (x-1)(x-2)(x-4) = 0

So roots are 1,2, 4 and so we have

\{a,b,c\} = \{1,2,4\} 

No comments: