Processing math: 100%

Monday, June 7, 2021

2021/041) The equation (x+a)(x+b)=9 has a root a+b . Prove that ab \le 1

 Solution 

Because a+b is a root so (x+a)(x+b)=9 shall be satisfied when x = a + b.
Putting x = a + b we get
(2a+b)(2b+a) = 9
or 2a^2 + 2b^ 2 + 5ab = 9
or 2(a^2+b^2) + 5ab = 9
or 2(a^2+b^2-2ab) + 9ab = 9
or 2(a- b)^2 = 9(1-ab)
now LHS is >=0 so is RHS so 9(1-ab) \ge 0 or 1-ab \ge 0 or ab \le 1

No comments: