Ans n = 1.
To prove that same we show that if n = 1 then this diverges and if n =2 this converges
To prove that it diverges for n = 1
Let the sum be S
We have $S = \sum_{k=1}^\infty \frac{1}{k^n}$
Or
$S = 1 + \sum_{k=1}^\infty (\sum_{i=2^{k-1}+1}^{2^{k}} \frac{1}{i^n})$
$S = 1 + \sum_{k=1}^\infty s_k\cdots(1)$
where $s_k = \sum_{i=2^{k-1} +1}^{2^{k}} \frac{1}{i^n}$
Basically we have broken the sum to smaller groups with each group $k^{th}$ group containing the sum of reciprocal of $2^{k-1} +1$ to $2^{k}$ we have separated 1 and 1/2 so that k can start from 1
Now let us compute $s_k = \sum_{i=2^{k-1} +1}^{2^{k}} \frac{1}{i^n}$
The above has got $2^{k-1}$ terms
and for $i < 2^k$ we have $ \frac{1}{i} > \frac{ 1}{2^k}$
Hence $s_k >= 2^{k-1} * \frac{ 1}{2^k}$
or $s_k >= \frac{ 1}{2}$
Putting in (1) we get
$S = 1 + \sum_{k=1}^\infty s_k = 1 + \sum_{k=1}^\infty \frac{1}{2} $
Hence it diverges
Now let us prove that it converges for n =2
For $n >=2$
We have $n^2 > n(n-1)$ or $\frac{1}{n^2} < \frac{1}{n(n-1)}$
We have $n^2 > n(n-1)$ or $\frac{1}{n^2} < \frac{1}{n(n-1)}$
as $\frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}$
so $\frac{1}{n^2} < \frac{1}{n-1} - \frac{1}{n}$
So $\sum_{k=1}^\infty \frac{1}{k^n}$
$= 1 + \sum_{k=2}^\infty \frac{1}{k^n}$
$< 1 + \sum_{k=2}^\infty(\frac{1}{k-1} - \frac{1}{k}$
$<= 1 + (1- \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3} ) + \cdots$
$ < 2$
No comments:
Post a Comment