Processing math: 100%

Friday, July 23, 2021

2021/054)Find all integer solutions of the equation \lfloor \frac{x}{1!}\rfloor + \lfloor \frac{x}{2!}\rfloor +\cdots + \lfloor \frac{x}{10!}\rfloor = 1001

 Let us define

f(x) =  \lfloor \frac{x}{1!}\rfloor + \lfloor \frac{x}{2!}\rfloor +\cdots + \lfloor \frac{x}{10!}\rfloor

So we have 

f(x) > \lfloor \frac{x}{1!}\rfloor for x>=2

as f(x) = 1001 so 

x < 1001

As 7!>1000 so we have   \lfloor \frac{x}{n!}\rfloor =0 for x< 1000 and n>6

Further 

f(kn!+i)= kf(n!) + f(i)\cdots(1) for k = 1 to n and i is less than n!

This is so because for m < n 

\lfloor \frac{kn!+l}{m!} \rfloor =  \lfloor\frac{kn!}{m!}\rfloor  + \lfloor \frac{l}{m!} \rfloor   

additionally  

f(kn!+i)= f(kn!) + f(i)\cdots(2) for any k and i \le n!\cdots(2)

and f((n+1)!) = (n+1)f(n!) + 1

to use the facts let us calculate f(k!) for k = 1 to 6.

f(1) = 1, f(2) = 3, f(6) = 10, f(24) = 41, f(120) = 206

and f(720) = 1237

so the value of  x is less than 720 so let us look at next lowest factorial that is 120

f(120) = 206

\lfloor \frac{1000}{206}\rfloor = 4 

using (1) f(120*4) = 206 * 4 = 824

Or f(480) =  824

So we have to account for 1001 - 824 = 177

now f(24) = 41  

\lfloor \frac{177}{41}\rfloor = 4 

so we f(96) = 41 * 4 = 164 

so $f(576) = f(480+96) = f(120 * 4 + 96)

= f(480) + f(96) = 824 + 164 = 988$

Now we have to account for remaining 13 and f(3!) = f(6) = 10

so 6 goes one more time and we ahve

f(582) = f(576 + 6) = f(24 * 24 + 6) = f(576) + f(6) = 988 + 10 = 998 using (2)

now we need to account for 3 and as f(2!) = f(2) =3 so we get

Ef(584) = f(582+2) = f(97 * 6) + 2 = f(682) + f(2) = 988 + 3 = 1001      

so x = 584

No comments: