Sunday, July 25, 2021

2021/055) How many divisors of the number $30^{2003}$ are not divisor of $20^{2000}$?

 Let us factorise $30^{2003}$ and $20^{2000}$

$30^{2003}= 3^{2003} * 2 ^{2003} * 5^{2003}$

as 2,3,5 are pairwise co-primes and in factor each can come 0 to 2003 times that is 2004 ways 

so number of factors = $(2003+1) * (2003 + 1) * (2003 +1)= 2004^3$

Now

$20^{2000}= 2^{2000} * (2 * 5) ^{2000}= 2^ {4000} * 5^{2000}$

$GCD(30^{2003},20^{2000}) = 2^{2003} * 5 ^{2000}$

Any number that divides $30^{2003}$ and $20^{2000}$  must divide $GCD(30^{2003},20^{2000})$

So number of numbers that divide $30^{2003}$ and $20^{2000}$ = $(2003+1)(2000+1) = 2004 * 2001$

So number of numbers that divide $30^{2003}$ and does not divide $20^{2000}$ = $2004^3 - 2004 * 2001 = 2004(2004^2-2021) = 8044086060$ 

8044086060 is the number of divisors of $30^{2003}$ that are not divisor of  $20^{2000}$ 

No comments: