Let us factorise 30^{2003} and 20^{2000}
30^{2003}= 3^{2003} * 2 ^{2003} * 5^{2003}
as 2,3,5 are pairwise co-primes and in factor each can come 0 to 2003 times that is 2004 ways
so number of factors = (2003+1) * (2003 + 1) * (2003 +1)= 2004^3
Now
20^{2000}= 2^{2000} * (2 * 5) ^{2000}= 2^ {4000} * 5^{2000}
GCD(30^{2003},20^{2000}) = 2^{2003} * 5 ^{2000}
Any number that divides 30^{2003} and 20^{2000} must divide GCD(30^{2003},20^{2000})
So number of numbers that divide 30^{2003} and 20^{2000} = (2003+1)(2000+1) = 2004 * 2001
So number of numbers that divide 30^{2003} and does not divide 20^{2000} = 2004^3 - 2004 * 2001 = 2004(2004^2-2021) = 8044086060
8044086060 is the number of divisors of 30^{2003} that are not divisor of 20^{2000}
No comments:
Post a Comment