Processing math: 100%

Saturday, July 9, 2022

2022/048) Given \frac{a^2}{b+c} = \frac{b^2}{c+a} = \frac{c^2}{a+b} = 1 Find \frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1}

 We are given

\frac{a^2}{b+c} = 1

or a^2 = b + c

or a^2 + a = a + b + c

or a(a+1) = a + b + c

or \frac{1}{a+1} = \frac{ a}{a + b+ c}\cdots(1)

similarly  \frac{1}{b+1} = \frac{a}{a + b+ c}\cdots(2)

and  \frac{1}{c+1} = \frac{a}{a + b+ c}\cdots(3)

adding all 3 above we get  \frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} = \frac{a+b+c}{a+b+c} = 1


No comments: