We have let t_n = \frac{1}{t^3-1} + \frac{1}{2}
= \frac{1}{2}\frac{t^3+1}{t^3-1}
=\frac{1}{2}\frac{(t+1)(t^2-t+1)}{(t-1)(t^2+t+1)}
Now given value = \prod_{n=2}^{100} \frac{1}{2}\frac{(t+1)(t^2-t+1)}{(t-1)(t^2+t+1)}
= \frac{1}{2^{99}} \prod_{n=2}^{100} \frac{(t+1)}{(t-1)}\frac{(t^2-t+1)}{(t^2+t+1)}
now let us compute the 2 products
\prod_{n=2}^{100} \frac{(t+1)}{(t-1)}= \frac{3}{1}.\frac{4}{2}.\frac{5}{3}\cdots \frac{98}{96}. \frac{99}{97}. \frac{100}{98}. \frac{101}{99}
In the above product the numerator of n^{th} term is same as denoniator of n+2^{nd} term giving
\prod_{n=2}^{100} \frac{(t+1)}{(t-1)} = \frac{100 * 101}{1 * 2}\cdots(1)
let us compute 2nd product
\prod_{n=2}^{100} \frac{(t^2-t+1)}{(t^2+t+1)}= \frac{3}{7} ( \frac{ 7}{13} \cdots \frac{9901}{10101}
In the above product the numerator of n^{th} term is same as denoniator of n-1^{st} term giving
\prod_{n=2}^{100} \frac{(t^2-t+1)}{(t^2+t+1)}= \frac{3}{10101}\cdots(2)
using (1) and (2) we get the required result
= \frac{1}{2^{99}}\frac{3}{10101} * 5050= \frac{2525}{2^{98} * 3367}
No comments:
Post a Comment