We need to find the mininal and maximal of $ab+bc+ca$
we have $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+ bc+ ca)$
so $ a^2 + b^2 + c^2 + 2(ab+ bc+ ca) > = 0$
puttig $a^2+b^2+c^2 = 1$ we get
$ 1 + 2(ab+ bc+ ca) > = 0$
or $(ab+bc+ca) >= - \frac{1}{2}$
Further to find tthe maximum we have $(a-b)^2 + (b-c)^2 + (c-a)^2 = 2(a^2 +b^2+c^2 - ab - bc - ca)$
or $2(a^2 +b^2+c^2 - ab - bc - ca) >= 0$
or $ab+bc+ca <= a^2+b^ + c^2$
or $ab+bc+ca <= 1$
so we have $ab+bc + ca \in [-.5 .. 1]$
No comments:
Post a Comment