as we see that the roots are doubleing in term to term so multiply numeraator and denominator by (\sqrt[16]{5}-1) we get
(\frac{4}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)} +1)^{48}
= (\frac{4*(\sqrt[16]{5}-1)}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)(\sqrt[16]{5}-1)} +1)^{48}
= (\frac{4*(\sqrt[16]{5}-1)}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[8]{5}-1)} +1)^{48} using a^2-b^2 formula for last 2 terms
= (\frac{4*(\sqrt[16]{5}-1)}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[4]{5}-1)} +1)^{48} using a^2-b^2 formula for last 2 terms-
= (\frac{4*(\sqrt[16]{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)} +1)^{48} using a^2-b^2 formula for last 2 terms-
= (\frac{(4*\sqrt[16]{5}-1)}{4}+1)^{48}
= (\sqrt[16]{5})^{48} = 5^3 = 125
No comments:
Post a Comment