Processing math: 100%

Monday, December 19, 2022

2022/079) Simplify (\frac{4}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)} +1)^{48}

 as we see that the roots are doubleing in term to term so multiply numeraator and denominator by (\sqrt[16]{5}-1) we get

 (\frac{4}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)} +1)^{48}

(\frac{4*(\sqrt[16]{5}-1)}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)(\sqrt[16]{5}-1)}  +1)^{48}

(\frac{4*(\sqrt[16]{5}-1)}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[8]{5}-1)}  +1)^{48} using a^2-b^2 formula for last 2 terms

(\frac{4*(\sqrt[16]{5}-1)}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[4]{5}-1)}  +1)^{48} using a^2-b^2 formula for last 2 terms-

(\frac{4*(\sqrt[16]{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)}  +1)^{48} using a^2-b^2 formula for last 2 terms-

(\frac{(4*\sqrt[16]{5}-1)}{4}+1)^{48} 

= (\sqrt[16]{5})^{48} = 5^3 = 125

No comments: