We have
$\frac{2+3z-4z^2}{2 - 3z+ 4z^2} \in R $
So $\frac{2+3z-4z^2}{2 - 3z+ 4z^2} -1 \in R $
Or $\frac{6z}{2 - 3z+ 4z^2} \in R $
Or $\frac{2 - 3z+ 4z^2}{6z} \in R $
Or $\frac{2 - 3z+ 4z^2}{z} \in R $
Or $\frac{2}{z} -3 + 4z \in R$
Or $\frac{2}{z} + 4z \in R$
Let $z = x + iy$ and $y\ne 0$
So we have $\frac{2}{x+iy} + 4(x+iy) \in R$
Or $\frac{2(x-iy)}{x^2+y^2} + 4(x+iy) \in R$
Or $\frac{-2y}{x^2+y^2} + 4y = 0$ as imaginary part has to be zero
So as we have y is not zero dividing by y we get $x^2+y^2 = \frac{1}{2}$ or $|z|^2=\frac{1}{2}$
No comments:
Post a Comment