Processing math: 100%

Saturday, May 11, 2024

2024/035) What are the maximum and minimum values of 3x+4y on the circle x^2+y^2=1

As x^2 + y^ 2 = 1 we can chose x = \sin\, t , y = \cos\, t

3x + 4 y= 3 ]sin\, t + 4 \cos\, t

To convert 3x + 4 y= 3 ]sin\, t + 4 \cos\, t to the form A \sin (x+ t)

A \sin (x+t) = A \sin\,t \cos\, x + A \cos\, t \sin\, x

We can choose 3 = 5 \cos\, x and 4 = 5\ sin\, x (as 3^2 + 4^2 = 25 = 5^2)

= 5 \cos\, x \sin\, t + 5 \cos\, t \sin\, x = 5 \sin (x-t)

It is maximum when \sin (x-t) = 1 and maximum value = 5

minimum when \sin (x-t) = -1 and minimum value = -5

No comments: