We have
${2p}\choose{p}$$=\frac{(2p)!}{p!p!}$ bu definition
$=\frac{p!\prod_{k=p+1}^{2p}k}{p!p!}$ bu expansion
$=\frac{\prod_{k=p+1}^{2p}k}{p!}$ cancelling p! from both numerator and denominator
$=\frac{2p\prod_{k=p+1}^{2p-1}k}{p!}$ by taking 2 p ouut
working in mod p we get $(p+n) \equiv n \pmod p$
So we get
$=\frac{2p\prod_{k=p+1}^{2p-1}k}{p!} \pmod p$
$=\frac{2p\prod_{k=1}^{p-1}k}{p!} \pmod p$
$=2\frac{p\prod_{k=1}^{p-1}k}{p!} \pmod p$
$=2\frac{p!}{p!} \pmod p$
$=2$
Proved