We have
{2p}\choose{p}=\frac{(2p)!}{p!p!} bu definition
=\frac{p!\prod_{k=p+1}^{2p}k}{p!p!} bu expansion
=\frac{\prod_{k=p+1}^{2p}k}{p!} cancelling p! from both numerator and denominator
=\frac{2p\prod_{k=p+1}^{2p-1}k}{p!} by taking 2 p ouut
working in mod p we get (p+n) \equiv n \pmod p
So we get
=\frac{2p\prod_{k=p+1}^{2p-1}k}{p!} \pmod p
=\frac{2p\prod_{k=1}^{p-1}k}{p!} \pmod p
=2\frac{p\prod_{k=1}^{p-1}k}{p!} \pmod p
=2\frac{p!}{p!} \pmod p
=2
Proved