Loading [MathJax]/extensions/TeX/mathchoice.js

Saturday, August 31, 2024

2024/048) Show that if p is prime then {2p}\choose{p} \equiv 2 \pmod p

 We have

 {2p}\choose{p}=\frac{(2p)!}{p!p!} bu definition

=\frac{p!\prod_{k=p+1}^{2p}k}{p!p!} bu expansion

=\frac{\prod_{k=p+1}^{2p}k}{p!} cancelling p! from both numerator and denominator

=\frac{2p\prod_{k=p+1}^{2p-1}k}{p!} by taking 2 p ouut

working in mod p we get (p+n) \equiv n \pmod p

So we get

=\frac{2p\prod_{k=p+1}^{2p-1}k}{p!} \pmod p

=\frac{2p\prod_{k=1}^{p-1}k}{p!} \pmod p

=2\frac{p\prod_{k=1}^{p-1}k}{p!} \pmod p

=2\frac{p!}{p!} \pmod p

=2 

Proved 

No comments: