We are given
ab+bc+ca = abc
Hence bc(a-1) = abc - bc = ab + ac = a(b+c)
Hence
\frac{(b+c)}{bc(a-1)} = \frac{(b+c)}{a(b+c)} = \frac{1}{a}
or
\frac{(b+c)}{bc(a-1)} = \frac{1}{a}\cdots(1)
similarly
\frac{c+a)}{ca(b-1)} = \frac{1}{b}\cdots(2)
and
\frac{(a+b)}{ab(c-1)} = \frac{1}{c}\cdots(3)
Adding (1),(2),(3) we get
\frac{(b+c)}{bc(a-1)} + \frac{(c+a)}{ca(b-1)} + \frac{(a+b)}{ab(c-1)}
=\frac{1}{a} + \frac{1}{b} + \frac{1}{c}
=\frac{bc+ca+ab}{abc} = \frac{abc}{abc}=1
No comments:
Post a Comment