Processing math: 7%

Saturday, November 9, 2024

2024/053) Given ab + bc + ca = abc find the value of \frac{(b+c)}{bc(a-1)} + \frac{(c+a)}{ca(b-1)} + \frac{(a+b)}{ab(c-1)}

 We are given

ab+bc+ca = abc

Hence bc(a-1) = abc - bc = ab + ac = a(b+c)

Hence

 \frac{(b+c)}{bc(a-1)} =  \frac{(b+c)}{a(b+c)} = \frac{1}{a}

or 

 \frac{(b+c)}{bc(a-1)} = \frac{1}{a}\cdots(1)

 similarly

 \frac{c+a)}{ca(b-1)} = \frac{1}{b}\cdots(2)

and

 \frac{(a+b)}{ab(c-1)} = \frac{1}{c}\cdots(3)

Adding (1),(2),(3) we get

 \frac{(b+c)}{bc(a-1)} + \frac{(c+a)}{ca(b-1)} + \frac{(a+b)}{ab(c-1)}

=\frac{1}{a} + \frac{1}{b} + \frac{1}{c}

=\frac{bc+ca+ab}{abc} = \frac{abc}{abc}=1

No comments: