We are given
$ab+bc+ca = abc$
Hence $bc(a-1) = abc - bc = ab + ac = a(b+c)$
Hence
$\frac{(b+c)}{bc(a-1)} = \frac{(b+c)}{a(b+c)} = \frac{1}{a}$
or
$\frac{(b+c)}{bc(a-1)} = \frac{1}{a}\cdots(1)$
similarly
$\frac{c+a)}{ca(b-1)} = \frac{1}{b}\cdots(2)$
and
$\frac{(a+b)}{ab(c-1)} = \frac{1}{c}\cdots(3)$
Adding (1),(2),(3) we get
$\frac{(b+c)}{bc(a-1)} + \frac{(c+a)}{ca(b-1)} + \frac{(a+b)}{ab(c-1)}$
$=\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$
$=\frac{bc+ca+ab}{abc} = \frac{abc}{abc}=1$
No comments:
Post a Comment