We have from the properties of AM
$\frac{1}{b + c} - \frac{1}{a + b} = \frac{1}{c + a} - \frac{1}{b + c}$
Or $\frac{a-c}{(b+c)(a+b)} = \frac{b-a}{((a+c)(b+c)}$
Or $\frac{a-c}{a+b }= \frac{b-a}{a+c}$
Or $(a-c)(a+c) = (a+b)(b-a)$
Or $a^2-c^2 = b^2-a^2$
Or $b^2+c^2= 2a^2$ hence $b^2, a^2$ and $c^2$ are in A.P.
No comments:
Post a Comment