We have from the properties of AM
\frac{1}{b + c} - \frac{1}{a + b} = \frac{1}{c + a} - \frac{1}{b + c}
Or \frac{a-c}{(b+c)(a+b)} = \frac{b-a}{((a+c)(b+c)}
Or \frac{a-c}{a+b }= \frac{b-a}{a+c}
Or (a-c)(a+c) = (a+b)(b-a)
Or a^2-c^2 = b^2-a^2
Or b^2+c^2= 2a^2 hence b^2, a^2 and c^2 are in A.P.
No comments:
Post a Comment