Processing math: 100%

Saturday, January 11, 2025

2025/003) If \frac{1}{a + b}, \frac{1}{b + c} and \frac{1}{c + a} are in A.P., prove that b^2, a^2 and c^2 are in A.P.

We have from the properties of AM

\frac{1}{b + c} - \frac{1}{a + b} =   \frac{1}{c + a} - \frac{1}{b + c}

Or \frac{a-c}{(b+c)(a+b)} = \frac{b-a}{((a+c)(b+c)}

Or \frac{a-c}{a+b }= \frac{b-a}{a+c}

Or (a-c)(a+c) = (a+b)(b-a)

Or a^2-c^2 = b^2-a^2 

Or b^2+c^2= 2a^2   hence b^2, a^2 and c^2 are in A.P.

No comments: