Loading [MathJax]/extensions/TeX/mathchoice.js

Wednesday, January 1, 2025

2025/001) If GCD(a,35) = 1 then show that a^{12} \equiv 1 \pmod {35}

 We have 35 = 7 * 5 so

GCD(a,5) = 1 and GCD(a,7) = 1

Because GCD(a,5) is 1 so as per Fermats Little Thorem a^{4} \equiv 1 \pmod {5} or 

a^{12} \equiv 1 \pmod {5}\cdots(1)

Because GCD(a,7) is 1 so as per  Fermats Little Thorem a^{6} \equiv 1 \pmod {7} or

 a^{12} \equiv 1 \pmod {7}\cdots(2)

From (1) and 2

 a^{12} \equiv 1 \pmod {35}

No comments: