Let $A= \cos20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ$
We have as 80 is double of 40 and 40 is double of 20 let us multiply both sides by $2\sin\,20^\circ$ we get
$A*2\sin20^\circ = 2\sin20^\circ\cos20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ$
or
$A*2\sin20^\circ = \sin40^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ$
or multiplying by 2 we get
$A*4\sin20^\circ = 2\sin40^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ$
or
$A*4\sin20^\circ = \sin80^\circ \cos 60^\circ \cos 80^\circ$
or $A*8\sin20^\circ = 2\sin80^\circ \cos 60^\circ \cos 80^\circ$
or $A*8\sin20^\circ = 2\sin80^\circ \cos 80^\circ \cos 60^\circ$
or $A*8\sin20^\circ = \sin160^\circ \frac{1}{2}$
or $A*8\sin20^\circ = \sin20^\circ \frac{1}{2}$ (as $\sin20^\circ = \sin 160^\circ$)
or $A * 8 = \frac{1}{2}$
or $ A= \frac{1}{16}$
Hence proved
No comments:
Post a Comment