Thursday, January 9, 2014

Q2014/002) Let x,y,z be real numbers such that 9x−10y+z=8 and x+8y−9z=10.



Evaluate x^22y^2+z^2.

Solution

 We are given:

(1) 
9x10y+z=8

(2) 
x+8y9z=10

To eliminate 
z, multiply (1) by 9 and add to (2) to get:

82x82y=82

Which implies:

x=y+1

Substituting for 
x in (1), we get:

9(y+1)−10y+z=8 or zy=−1 so yz=1

putting this in (2), we find no contradiction.

Thus, we have:

(3) 
xy=1=> x = y+ 1

(4) 
yz=1=> z = y- 1

x^22y^2+z^2= (y+1) ^2 + (y-1)^2 – 2y ^2 = 2 after expanding and simplifying

No comments: