Saturday, January 25, 2014

Q2014/008) Solve in positive integers for 577(bcd+b+c)=520(abcd+ab+ac+cd+1)


577(bcd+b+c)=520a(bcd+b+c)+520(cd+1)

(577520a)(bcd+b+c)=+520(cd+1)

First conclusion: 
 a=1

57(bcd+b+c)=+520(cd+1)

57b(cd+1)+57c=+520(cd+1)

57c=(52057b)(cd+1) b<10

Further
57c=(520−57b)(cd+1) 
=> 520 - 57b < 57
or b >= 9
so b = 9
hence

No comments: