577(bcd+b+c)=520a(bcd+b+c)+520(cd+1)
(577−520a)(bcd+b+c)=+520(cd+1)
First conclusion: a=1
57(bcd+b+c)=+520(cd+1)
57b(cd+1)+57c=+520(cd+1)
57c=(520−57b)(cd+1) →b<10
(577−520a)(bcd+b+c)=+520(cd+1)
First conclusion: a=1
57(bcd+b+c)=+520(cd+1)
57b(cd+1)+57c=+520(cd+1)
57c=(520−57b)(cd+1) →b<10
Further
57c=(520−57b)(cd+1)
=> 520 - 57b < 57
or b >= 9
so b = 9
hence
=> 520 - 57b < 57
or b >= 9
so b = 9
hence
57c=7(cd+1)
c(57−7d)=7 →d=8 →c=7
refer to http://mathhelpboards.com/challenge-questions-puzzles-28/solve-positive-integers-8202.html#post37808
c(57−7d)=7 →d=8 →c=7
refer to http://mathhelpboards.com/challenge-questions-puzzles-28/solve-positive-integers-8202.html#post37808
No comments:
Post a Comment